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Abstract 

A theoretical approach is described aiming at exploit- 
ing, by the method of joint probability distribution 
functions of structure factors, the information pro- 
vided by a Patterson map. Among the various possible 
types of information the minimal one, i.e. position 
and intensity of a Patterson peak, has been taken into 
account. It is shown that Cochran's  distribution of 
triplet phases is substantially modified when such 
prior information is considered. 

1. Symbols and abbreviations 

Throughout this paper a number of symbols will find 
frequent application. For the sake of simplicity they 
are here listed together. 
f (h) :  atomic scattering factor. The thermal factor is 

included; anomalous dispersion is not con- 
sidered. 

N: number of atoms in the cell. 
V: volume of the cell. 
t: number of symmetry-independent atoms in the 

cell. 
m: order of the space group (it equals the number 

of symmetry operators). 
p(r): electron density function. 
Fh: structure factor with vectorial index h. 
E~, = R~ exp (itph): normalized structure factor when 

the only available prior informa- 
tion is the atomicity. R~ is the 
modulus of E~,, ~ph is the phase. 

Eh = Rh exp (iCh): normalized structure factor when, 
besides atomicity, information on 
some interatomic vectors is also 
available. 

rj: positional vector of the j th  atom. 
u: interatomic vector. 
Cs --- (Rs, T~): sth symmetry operator. R, is the rota- 

tional part, T~ the translational part. 
C~r~ = R s r j + T s :  positional vector of the atom sym- 

metrically equivalent to rj. 
N 

EN(h) = ~ f~(h). 
j=l 

N 

~, (h,, h2, h3) = ~ fj(h])f~(h2)f:(h3). 
j=l 

0108-7673/91/030256-08503.00 

= ~o,, + ~0,2 + ~Ph3 with hl + h2 d- h3 = 0. 
N 

crn = ~'. Z 7 where Zj is the atomic number of the j th  
j=l 

atom. 

l , (x) :  modified Bessel function of order n. 

2. Introduction 

Both Patterson and direct methods determine the 
atomic positions starting from diffraction intensities: 
direct methods are used in reciprocal space, Patterson 
methods in direct space. The connection between the 
two methods has been considered by many authors 
(for a review, see Giacovazzo, 1980). 

Vaughan (1958) studied the function 

P(ul ,  u 2 , . . . , u , ) =  ~ p ( r ) p ( r + u l ) . . ,  p ( r + u , )  dV 
v 

to derive phase information on triplet invariants (for 
n = 1 the function P coincides with the usual Patter- 
son function). Hauptman & Karle (1962) developed 
their algebraic 'vector interaction formula'  which 
exploits pairs of interatomic vectors satisfying the 
relation u 0 + ujk = uik where u 0 = r~ - rj. Hoppe (1963), 
Main & Woolfson (1963), Allegra (1979) and Rius & 
Miravitlles (1989) described algebraic methods for 
phase estimation which make use of the zero points 
in the Patterson function. Further contributions have 
been made by Kroon & Krabbendam (1970) who 
showed how the molecular orientation can be related 
to some features of the double Patterson and how 
that can be used to determine the signs of triplet 
invariants. Krabbendam & K_roon (1971) emphasized 
the importance of the Hoppe (1957) sections of the 
double Patterson for phase determination, von Eller 
(1973) applied his polynomial method to a Patterson 
map in order to derive Cochran's  relation (Cochran, 
1955) for triplet estimation. Heinerman, Krabbendam 
& Kroon [1975; see also Heinerman, Krabbendam, 
Kroon & Spek (1978) and Pon tenagel, Krabbendam 
& Kroon (1987)] studied in P1 the joint probability 
distribution P(Ek, Eh+k, M)  with h fixed, where 

M = cos [2~-(h/2+ k) .  u] 

and u is the Patterson vector of the symmetry- 
equivalent atoms (u--2r) .  New probabilities based 
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on the Patterson function were also derived by Brosius 
(1985) in P1, with special interest in the sign of the 
seminvariant E2h. 

In the present paper (the first of a series), we study 
how the information arising from a Patterson map, 
used as prior information, may modify Cochran's  
distribution for triplet invariants. No interpretation 
of the Patterson map is needed for the application of 
the present theory: in particular, pairs of peaks of 
type u 0 = r i - r~  and Uik =r i - - rk  do not need to be 
sought. In practice, we intend to exploit in this paper 
the minimum level of information provided by a 
Patterson function, i.e. coordinates and intensities of 
one or more peaks. The use of more specific or elabor- 
ate information contained in a Patterson map [i.e. 
Harker peaks or pairs of vectors of type (u0, Ujk) etc.] 
will be discussed in the following papers of this series. 

In the present approach, the set of symmetry- 
independent atomic positional vectors are chosen to 
be the random variables, while hi,  hE, h 3 are a fixed 
triple of reciprocal vectors satisfying 

h l+h2+h3  = O. (1) 

In the absence of Patterson information, all the t 
positional vectors rj can be assumed to be statistically 
independent of one another and uniformly dis- 
tributed in the asymmetric unit. Let us now suppose 
that, by inspection of a Patterson map, an interatomic 
vector, say u = rjl - rj~, is a priori known. Also, let the 
scattering factors of the atoms at rj, and rj~ be known 
(we will see later that such an assumption is not too 
critical in most cases). Then rj2 is no longer a random 
variable since it is completely determined in terms of 
rj, and u. Consequently, the number of primitive 
random vectors reduces from t to t - 1 .  

The above considerations suggest that standard 
probabilistic methods for triplet invariant estimates 
have to be modified when prior information on an 
interatomic vector is available. This is the main aim 
of the present paper. It will also be shown that, under 
some general hypotheses, prior information from a 
Patterson peak arising from the overlapping of more 
interatomic vectors may also be treated by the theory 
here developed. 

3. The role of  the Patterson information 
in direct methods 

It was shown by Cochran (1952) that, owing to the 
atomicity of the electron density, a crystal structure 
should satisfy 

S P 3 ( r )  d r = m a x .  (2) 
v 

Stanley (1979) used (2) as a specific criterion for 
direct determination of centrosymmetrical electron 
density distributions: the correct sign for a structure 
factor was assumed to be that giving rise to the largest 

value of (2). This relationship may be considered the 
real-space counterpart  of the tangent formula (Karle 
& Hauptman,  1956): their application in symmorphic 
space groups mostly produces the so-called Patterson- 
like function, where all the F ' s  have positive signs or 
have signs systematically defined by the parity of the 
indices. 

Positivity and peakiness of the Patterson function 
may be used in combination with (2) to improve the 
efficiency of the phasing process. For the sake of 
simplicity, but without losing generality, let us assume 
that the space group is P1. If the position of a Patter- 
son peak is known we can expect that in a suitable 
domain 

S= ~ pa(r) d r + a  ~ p ( r+u)p2( r )  d r =  max (3) 
v v 

should be satisfied, where a is a suitable parameter. 
Relation (3) can be written as 

S = P(0, 0) + aP(u,  0) = max, 

where P(u,v)  is the double Patterson function. 
Expressing p in terms of structure factors gives 

S= Y. Fh,Fh2Fh3[ l + a exp (--27rihlU) ] 
ht+h2+h3=O 

---- m a x .  

The same triplet Fb, Fh2F,3 will appear in S 12 times: 
its total contribution to Jv P( r+u)p2(r )  dr is 

Fh, Fh2Fh3 exp (-27rih~u) 

+ Fh, Fh3Fu~ exp (-2¢rihlU) 

+ FhzFh, Fh3 exp (-2arih2u) 

+ Fh~Fh~Fh, exp (-2¢rih2u) 

+ Fn, Fh, Fh: exp (-2arihsu) 

+ Fh, Fh~Fh, exp (-2arihsu) 

+ F-h,F-h:F-h3 exp (2rrih~u) 

+ F_h,F-h~F-h~ exp ( 2 w i h l u ) + . . .  

= 2 Fh, Fh~Fh~l exp ( i~ ) [exp  (-2wih~u) 

+ exp (-2ar ih2u)+ exp (-2arihsu)] 

+ 2lFh, Fh~Fb,[ exp ( - i ~ ) [ e x p  (2 rrih]u) 

+ exp (2"n'ih2u) + exp (2"n'ih3u)] 

= 4  FhIFh:F,3 {cos ( ~ -  2rrh]u) 

+ COS ( qb --  2 a r h 2 u )  + c o s  ( qb - 2"n 'h3u)} .  

Accordingly, the total contribution in (3) of the 
triplet Fh, Fh~Fh3 to ~v P3(r) dr is 12 Fh, Fh~Fh, cos ~.  
Then 

S = 4  E' Ifh, Fh~Fh31{ 3 COS ~ +  a[cos (q~- 21rhea) 

+ cos ( • - 2 rrh2u) + cos ( ~  - 2"n'h3u)]}, 

where the prime to the summation warns the reader 
that Friedel-related triplets do not enter into the sum. 
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We can also maximize 

S= ~ v p3(r) dr+ a[ ~vP(r+u)p2(r) dr 

+ ~ p ( r -u )p2( r )  dr]  
V J 

so obtaining 

S = 4  ~'  Fu, Fu~Fu3 cos 
ht +h2+h3=O 

x {3 + a[2 cos 21thou+ 2 cos 2 ~ h 2 u  

+ 2 cos 2"n'h3u]} 

= max. 

We are now able to exploit the space-group sym- 
metry. The function to maximize is now 

S=~up3(r) dr+a[==l ~ ~v p(r+R~u)p2(r)dr 

+,=,~ v j" p ( r -  R,u)p2(r) dr] 

which yields 

s - -  E' IF~,F~=N,I cos ,~ 
h n + h 2 + h 3 = 0  

f m 
× ~3 + 2a Y. (cos 2~rhiR,u 

L $=I 

+ cos 2~rh2R,u + cos 2~rh3R,u) } 

=- max. 

When S is maximized, due account has to be taken 
of the multiplicity (according to symmetry) of the 
reflection hi, h2, h3 and/or of the interatomic vectors 
U. 

With the assumption that all ~Pb2 and cph3 are known 
an estimate of ~Ph may be obtained by applying the 
condition 8S/&Pu -~ O. Then 

Y~ ~/sin (~h~+ ~h,) (4) 
tan ~h, = --y~ /3j COS (~h2+ ~h~)' 

wherej  varies over the set of triplets involving ~h, and 

fl=lFu,Fu2Fh3 3 + 2 a  Y. ( c o s 2 ¢ r h i R ~ u  
s = |  

+ cos 2¢rh2R,u + cos 2¢rh3R~u)}. 

In conclusion, (3) seems able to exploit a larger 
amount of prior information than the Cochran 
relation 

Y: Fb, Fh 2 Fh 3 COS ¢215 = max 
h l + h 2 + h 3 = 0  

and may be immediately generalized to the case in 
which more symmetry-independent Patterson peaks 
are a priori known. On the other hand, we have no 
clear way of fixing the 'best' value of the parameter 
a: furthermore, no probabilistic guess may be made 
about the reliability of (4) owing to its asymptotical 
nature. In order to obtain probabilistic phase relation- 
ships, we will apply to our problem the method of 
joint probability distribution functions modified in 
such a way that prior information on a Patterson peak 
is taken into account. 

4. The average value of IFul 2 when one interatomic 
vector is a pr/or/known 

If no prior information is available except atomicity 
then (Wilson, 1949) 

N 
([Fh]) 2= Y. f~(h). (5) 

j= l  

Suppose now that the interatomic vector u = r p - r q  
has been identified from a Patterson map and that fp 
and fq are the scattering factors of the atoms in p and 
q. For the sake of simplicity, we will assume in our 
mathematical treatment that both rp and rq denote 
general atomic positions. Also, the average value of 
[Ft.[ 2 w h e n  the prior information on u is available will 
be denoted by <lF, l=lu>. 
( a ) Non-centrosymmetrical space groups 

According to our hypotheses 

Fh = ~. fjCh) ~ exp2~rihe,r: 
j = l  s = l  

j ¢ P , q  

+fp(h) ~. exp27rihC,rp 
$ = 1  

+ f q ( h )  ~. e x p 2 " r r i h C s ( r p + U ) .  
s = l  

Then 

<lFhl21u)=~h{m ~ f~(h)+mf~(h)+mf~(h) 
j = l  

j;e p, q 

- } 
+ 2fp(h)fq(h) ~ cos 27rhR~u 

s=l 

-----eh N (h)+2fp(h)fq(h) E cos2~rhRsu 
s=l 

(6) 

where e~ is the Wilson coefficient for the h reflection. 
The coefficient 2 to the second term at the right 

side of (6) takes into account the fact that two Patter- 
son peaks exist, at u and -u, respectively. 
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( b ) Centrosymmetrical space groups 

m/2 
Fh = 2 ~ fj(h) Y~ cos 2~rhCsrj 

j = l  s = l  
J~P,q 

m/2 
+2fp(h) ~ cos 2¢rhCsrj 

$=1 

,,I/2 
+2fq(h) E cos 21rhC,(rj +u), 

$=1 

where m / 2  is the number of symmetry operations not 
related by the inversion centre. Accordingly, 

(IF~l~u)=e~{m ~ /2(h)+mj~p(h) 
j = l  

j~p,q 

m/2 } 
+mf2(h)+4fp(h)fq(h) ~ cos2¢rhRsu 

$=1 

( -- } =eh 2N(h)+4fp(h)fq(h) 2 cos2~rhR# . 
$=1 

(7) 
The coefficient 4 in the second term on the right side 
of (7) takes into account the fact that, in centrosym- 
metrical space groups, besides the pair (rp, rq) the 
pair ( - rp , - rq )  also exists. 

Comparison between (5) and (6)-(7) suggests that 
prior information on an interatomic vector may sig- 
nificantly change the expected values of the squared 
moduli, especially when the atoms in rp and rq rep- 
resent a non-negligible percentage of the electrons in 
the unit cell. It may also be noted that (6) may be 
used for centrosymmetrical space groups too: this 
time m includes symmetry operators related by the 
inversion centre. 

For subsequent use we define here two types of 
normalized (according to the prior information) 
structure factors: 

E',.= Fh/(lF,,l~) "~ and Eh---- Fh/(IF,,I:Iu) "~. 

R~, and Rh will denote the moduli of E'~ and Eh, 
respectively. 

5. The conditional distribution P((]DIRh, , Rhz , Rh3 , U) 
in non-centrosymmetric space groups 

If no prior information is available besides atomicity 
then 

(FhtFh2Fh3) = E 3  ( h i ,  h 2 ,  h 3 ) .  ( 8 )  

The conditional probability of • given R'.-,, R'.-~, Rh3 
is (see also Cochran, 1955) 

P(¢, IR ' . . , ,R[~,R ' . .~)=[2Cdo(G')]  - '  exp (G' cos ~),  

where 

G'= 2(FhtFhEFh) g '  g '  R '  (9) 

+ fq (h,)fp (h2)fq (h3)~. 
s = l  

+ fq(h,)fq(h2)fp(h3) 
s = l  

+fp (ht)fp (h2)fq (h3) 
s = l  

exp - 27rih2R~u 

exp - 21rih3R~u 

exp + 27rih3R~u 

=[~3  (hl ,h2,h3)+Qi s=l ~" cos 2~rhlR~u 

+ Q2 ~=I ~ cos 2"trh2Rsu + Q3 s = l  ~ cos 2"/rh3R~u] 

+ i [ 7"] s=! ~ sin 2~hlR~u + 7"2 s=l ~ sin 2~h2Rsu 

m ] 
+ 7"3 Y~ sin2~h3R~u 

$ = |  

= MR + iM~ = M exp (iO), 

where 

M-(M~ + M~) 1/2, 
tan ~, = M I / M n  

,~,.,. r . . - 3 / 2 D r  D t  D l  
¢.. t,, 3 t l  2 z'~ ht l~,h2 I'L h3. 

For equal atoms G ' -  ' ' ' N 1/2 
- 2Rh, Rh2Rh3/ • 

If the interatomic vector u is a priori known then 

( Fht Fh2 Fh3 U) 

=([ ~ :(h,)~ exp2"rrih,C,rj 
j = l  s = l  

j#p,q 

+fp(hl) ~ expEcrihlCsrp 
$=1 

+fq(hl) exp 27rihlCs(rp +u)]  

x [equivalent expression for hE] 

x [equivalent expression for b3]) 

= )-'-3 (hi, h2, h3) 

+.fq(hl)fp(h2)fp(h3) ~ exp2~rihlSsu 
s=l 

+ fp(hl)fq(h2)fq(h3) ~ exp-21rihlRsu 
$=1 

+.fp(hl)fq(h2)fp(h3) ~ exp21rih2Rsu 
s = l  
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and 

Q. = fq (bn)fp (h2)f.(h3) +fp (ht)fq (h2)fq (h3) 

Q2 = fp(h.)fq (h2)fp (h3) +fq (h.)fp (h2)fq (h3) 

Q3 = fq (b,)fq (b2)fp (b3) +fp (b,)fp (b2)fq (b3) 

T1 -- fq (hi)fp (h2)..fp (h3) - fp  (hi).fq (h2)fq (h3) 

7"2 = fp (hi)fq ( h2 )fp (h3) - fq  (hi)fp (h2)fq (ha) 

T 3 = fp (h,)fp (h2)fq (h3) - fq  (h,)fq (h:)f. (h3). 

(Fht Fb~F~,IU) is in general a complex number the phase 
O of which may lie anywhere between 0 and 2w. The 
conditional distribution P(tP]R,,,,Rh2, R,,~,u) may 
then be written as 

where 

P( rP[Rb,, Rh2, Rh3, u) 

~ [2~rlo(G)] -1 exp [ G cos ( cp-  0)] (lO) 

o = { M/[<1 p,,, I lu><l p,,,l lu)<l  ,,,121u> ]l/2} 
× 2Rh, Rb2Rb3 (11) 

is a positive term and (IFh,[2[u) is given by (6). 
Owing to the prior information, the triplet phase 

is no longer expected to be zero. Such a result is not 
a surprise: indeed, at the same time at which we 
assume that atoms with scattering factors fp and fq 
lie at rp and rq, respectively, then we also fix the 
enantiomorph (associatingfp with the position rq and 
fq with rp should fix the other enantiomorph). Iffp - f q  
then 7"1 = T2 = T3 = 0, MI = 0 and the enantiomorph 
is no longer fixed by prior information. Also, for 
X-ray diffraction, if Zp ~ Zq or IZp - Zql < Fooo, then 
the enantiomorph is not defined for practical applica- 
tions. 

It is worthwhile mentioning that in P1 the prior 
information about the interatomic vector u may be 
exploited in a more effective way than by the present 
theory. Indeed, in P1 the origin is free in any direc- 
tion: thus, the first of  the two atoms connected by u 
may be arbitrarily located, and the second may be 
placed in position u or - u  (if Zp # Zq the enan- 
tiomorph is also fixed by any of the two choices). 
Such a two-atom fragment may be considered as a 
well located molecular fragment: recovery of the com- 
plete crystal structure may then be accomplished by 
techniques such as those described by Beurskens, 
Prick, Doesburg & Gould (1979) or by Burla, Cas- 
carano, Fares, Giacovazzo, Polidori & Spagna (1989). 

6. The conditional distribution P(OlRh,,  Rh2, Rh~, U) 
in centrosymmetric space groups 

Since • may assume only values 0 or ~r, we state the 
probability density for t p -  0. We obtain 

P ( ~  =0)  =~+½tanh Gc (12) 

where 

= { M / [ ( I F . , I  u)( F,J Iu)<IF,.,I = u)] '/=} 
X RhtRh~Rh3, 

m/2 

M=Y~3(hl,h2,h3)+2Q~ 2 cos2~rh~R,u 

,,1/2 
+2Q2 ~ cos 2~h2R,u 

s = l  

m/2 
+2Q3 Y, cos 2"rrh3R,u 

$ = 1  

and (IFh,121u) is given by (7). 

(13) 

7. The average value of  IFhl z when more interatomic 
vectors overlap on u 

Let us suppose that the Patterson peak u is generated 
by overlapping of more symmetry-independent inter- 
atomic vectors 

rj, - rj2 = rj~ - rs, = . . .  = u 

and that the scattering factor of the atom in each 
position rs is a priori known. We will also assume that 

j~ # j2 # j3 # j4 # . . . .  (14) 

Such conditions are not too restrictive and are 
frequently satisfied, at least approximately, in usual 
crystal structures. In Fig. l (a)  a geometrical 
molecular model is shown: each of the two types of 
Patterson peaks (say 1-2 and 13-14) is the sum of 
six overlapping interatomic vectors. It is easily seen 
that condition (14) is satisfied for each of the two 
peaks. Thus it seems worthwhile exploring how the 
prior information on such overlapped interatomic 
vectors modifies the Wilson statistics and the standard 
probabilistic formulae for the estimation of triplet 
invariants. 

We stress the point that results obtained in the 
present paper cannot be applied to a Patterson peak 
for which condition (14) is not satisfied. For example, 
in Fig. l(b) the condition is violated for the peak 
U = r I -rE = r4--r~ and similar other peaks. If such 
cases are recognized a larger amount of prior informa- 

6 

2 4 6 / / "  

13 11 9 7 

(a) (b) 

Fig. 1. Two geometrical patterns generating overlapping Patterson 
vectors. 
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tion is available in practice: for example, since u = 
r l -  r2 = r 4 - r t ,  the additional interatomic vector r4 -  
r E remains completely defined. Special treatments will 
be devised for such cases in the following paper of 
this series. 

The average of IF~I 2 when more interatomic vectors 
overlap in n may be obtained by a generalization of 
the procedure described in § 3. The conclusive 
formulas are: 

non-centrosymmetrical space groups 

centrosymmetrical space groups 

r=/2 2 rhR, u] 

x [ X' fp(h)fq(h)] } . (16) 
L ( p , q )  

In (15) and (16) the primed summation goes over the 
pairs of symmetry-independent atoms referred to n. 

Because of the geometrical conditions at the basis 
of our statistical model, it will never occur that 

otherwise negative values of (IF I%> could be 
obtained when hR,u is a semi-integer value for any s. 

8. The conditional distribution P(¢I)IRh, , Rhz , Rh3, U ) 
when more interatomic vectors overlap on u 

If some prior information is available which permits 
the association of specific scattering factors to each 
atomic position rj involved in the formation of the 
interatomic vector n then the distribution (10) still 
holds, provided 

Q~= ~,' [fq(hl)fp(h2)fp(h3)+ fp(hl)fq(h2)fq(h3)] 
(P,q) 

Q2 = ~'.' [fp(hl)fq(h2)fp(h3)+fq(hl)fp(h2)fq(ha)] 
(p.q) 

Q3 = )-'.' [fq(h,)fq(h2)fp(h,)+fp(h,)fp(h2)fq(h3)] 
( P ' q )  (17) 

T~= ~' [fq(h~)fp(hE)fp(h3)-fp(hl)fq(h2)fq(h3)] 
( P , q )  

7"2 = ~'  [fp(hl)fq(hE)fp(h3)-fq(h~)fp(h2)fq(h3)] 
( P , q )  

7"3 = ~'.' [fp(h~)fp(hE)fq(ha)-fq(h~)fq(h2)fp(h3)]. 
( P , q )  

Unfortunately, inspection of a Patterson map usually 
provides estimates of the terms Qj but not of the terms 
Tj. In this case, the most sensitive choice is to assume 
Tj = 0 forj  = 1, 2, 3 and to renounce the enantiomorph 

definition: then 

P(~IRh, ,  Rh~, Rh~, U) ~-- [2 ~10(G)]- '  exp (G cos ~) ,  

(18) 

where 

O -- { M/[(IF,,,I%)(IF,,flu)(IF,,,I=Iu)]'/=}2R,,Rh~R,,, 
(19) 

and 
m 

M = ~3 (hi, h2, h3) + Q1 ~ cos 2whlR,u 
s = l  

n'l 

+ Q2 ~'. cos 2"rrh2Rsu 
s = l  

+ Q3 ~ COS 2"n'h3Rsu. (20) 

Q1, Q2, Q3 are defined according to (17). 
By analogy, when more interatomic vectors overlap 

on u in centrosymmetrical space groups, distribution 
(12) will exactly hold provided (16) for (]Fh,[2]u) and 
(17) for Qi, i -- 1, 2, 3, are used. 

9. The case in which 2u is a lattice vector 

Let us suppose that: (a) atoms related by vector u 
are all equal; (b) 2u is a lattice vector [i.e. n - - a / 2  or 
( a+b) /2  o r . . . ] .  Then an ideal pseudotranslational 
symmetry of order n = 2 exists: in this case the present 
theory overlaps with part of that described by Cas- 
carano, Giacovazzo & Lui6 (1985, 1987; from now 
on papers I and II, respectively). In spite of the quite 
different notations the conclusive formulas for n = 2 
should coincide. In order to check that, we first 
examine (I.5): 

(IFhl~> = ~h[Sh ~,, (h) +Yq (h)] (1.5) 

where ~, (h) = ~ i ' - - l :  and ~n h q 2 ( )=Y.~=lf~. tp is the 
number c~f independent atoms that generate all the p 
atoms related by pseudotranslational symmetry when 
the pseudotranslation vector u and the symmetry 
operators C,, s = 1 , . . . ,  m, are applied, q is the num- 
ber of atoms (symmetry equivalent included) whose 
positions are not related by any pseudotranslation 
vector. 

When n = 2, 8h is defined by 
m 

8h = ~ sin 2 2~hR.~u/s in2 7rhR,u. (21) 
s = |  

On introducing in (21) the trigonometric formulae 

sin 2 x = 2 s i n x c o s x  and 2cos 2 x = l + c o s 2 x ,  

(I.5) reduces to 

(IF,,12) = ~,, [2m E, (h)+ 

+Eq (h)] .  

2~'., (h) (s~1 cos 2~'hR, u) 

(22) 
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Since 2m~,o=~.. p and ~p+~q=~N, (22) may be 
written as 

which coincides with our equation (15) [by 
hypothesis we must assume in (15)fq(h)-~fp(h)].  

When only a pseudotranslational vector of order 
two exists, the reliability parameter for a triplet phase 
in non-centrosymmetric space groups was given by 
(II.3): 

Gp, = 2R,,,R,,~R,,3[(IF,,,I2)(IF,,2[2)(IFh3I 2)1-' M,,,, 
where 

and 

'I ]( ) Mps = -~-~m E3 (ht ,h2,h3) ~ Ts 
p s=l 

-FIE3 (hi, h2, h3)lq 

sin (2~rh~R~u) sin (2~h2Rsu) sin (2"rrh3Rsu) %= 
sin (1rh~Rsu) sin ('n'h2R~u) sin ('trh3Rsu) 

The indices p and q to Y~3 (h~, h2, h3) warns the reader 
that the summation is extended only to p and q atoms, 
respectively. 

Because of the result just obtained, Gps will 
coincide with our G as defined by (19) if Mp~---M. 
By application of trivial trigonometric formulae we 
find 

T~ ---- 8 COS (~hlR~u) cos (~h2Rsu) cos (~rh3Rsu) 

= 2(1 + cos 2~hlR,  U 

+ cos 21rh2Rsu + cos 2~h3R~u) 

so that 

- cos 2"trh~R~u 
p m s=l 

m 
+ Y. cos 21rh2R~u 

s=|  

We observe now that 

+ h 2 +  h3 ) ]  • 

q 

(a) [~3 (hi, h2, h 3 ) ] - F  [~3 (hi, h2, h3) ] 
P q 

---~ E3 ( h i ,  h2, h3) 

(b) [ ~ 3 ( h l , h 2 , h 3 ) ]  / m = 2 [ ~ . 3 ( h l , h 2 , h 3 )  ] 
p tp 

- = 2 Q l = 2 Q 2 = 2 Q 3  . 

Finally, Mps ~ M and Gps --- G. 

10. Triplets and Harker sections 

If u is a Harker peak the present mathematical model 
cannot be applied. It is, however, anticipated that 
Harker sections can provide additional information 
for triplet estimation. In particular, Harker sections 
will prove highly efficient for the estimation of one- 
phase seminvariants of first rank; this is in accordance 
with some recent algebraic results (Ardito, Cas- 
carano, Giacovazzo & Lull,  1985; Cascarano, 
Giacovazzo, Lui~, Pifferi & Spagna, 1987). 

11. Concluding remarks 

A Patterson map may be analyzed in order to obtain 
different types of information: the simplest consists 
of the knowledge of one or more interatomic peaks. 
More elaborated information is the identification of 
Harker peaks (false and true Harker peaks cannot 
always be distinguished). Additional work is required 
when the Patterson map is used in order to define 
the orientation of a molecular fragment and /o r  its 
location. 

In this paper, the theoretical bases have been given 
in order to integrate the simplest type of Patterson 
information, the knowledge of a non-Harker peak, 
in the method of joint probability distributions of 
structure factors. It has been shown that the reliability 
of a triplet phase estimate may be strongly affected 
if the location and the intensity of a Patterson peak 
are used as prior information in the probabilistic 
approach. When 2u is a lattice vector, the probabilistic 
formulae coincide with those obtained by Cascarano, 
Giacovazzo & Lui6 (1985, 1987) for the case in which 
only one pseudotranslational vector of order 2 exists. 

Readers may think that the usefulness of our con- 
clusive formula (20) is limited by the facts that not 
only may the interatomic peak involve unequal atoms 
but also that it seems necessary to know which atoms 
are involved in producing the Patterson peak. 
Actually that is not true. It will be shown in a paper 
by Altomare, Cascarano & Giacovazzo (1991) that 
estimates of the factors Qt, Q2, Q3 in (20) may be 
expressed in terms of Patterson peak intensity. 

It is also anticipated that a light-atom structure 
resistant to any attempt has been solved by applica- 
tion of such a theory. The Patterson map showed a 
very large peak (with intensity larger than half the 
origin peak) due to the superposition of several light- 
atom-light-atom interactions. Such a situation 
reduces the efficiency of traditional direct methods 
(indeed atoms are not uniformly distributed) but it 
is an ideal test for the present theory which can exploit 
prior information on the distribution of the atoms. 
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Abstract 

Cadmium iodide and lead iodide have been highly 
purified by a horizontal zone refining technique. Den- 
dritic single crystals of PbI2-doped cadmium iodide 
have been grown from vapour phase in vacuum. The 
effect of doping on polytype formation and other 
structural characteristics has been studied by X-ray 
diffraction. The crystals have shown the formation of 
rhombohedral  polytype 12R in about 50% of cases, 
along with the common polytype 4H of cadmium 
iodide. This is in sharp contrast to earlier findings for 
undoped dendritic crystals which exclusively con- 
tained the polytype 4H. Further, unlike the undoped 
crystals, some of the doped crystals also show streak- 
ing and arcing on their X-ray photographs. The 
observed structural changes may be governed by both 
thermodynamical  considerations and the kinetics of 
crystal growth and the observed streaking and arcing 
result from internal stresses built up around the rela- 
tively large Pb 2÷ ions in the host CdI2 structure. 

Introduction 

A vast amount of experimental and theoretical work 
has been carried out on the polytypism of crystals, 
particularly in the last three decades. The crystals 
studied have had several different habits, viz plates, 
needles, prisms, pyramids etc.; the crystals of strongly 
polytypic materials like CdI2, SiC and ZnS are usually 
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plate shaped. No work has been done on the polytyp- 
ism of dendritic crystals. In fact, no attempts have 
previously been made to grow dendritic crystals of a 
polytypic material. However, it is now realized that 
the formation of polytypes is also related to crystal 
habit. For instance, GaSP crystals have been grown 
in many habits like plates, needles, thin ribbons, 
prisms, truncated pyramids etc., but polytypism has 
been observed only in the needle-shaped crystals 
grown by sublimation (Terhell, 1983). Similarly, only 
needle-shaped AgI crystals show polytypism, 
although these crystals have been grown in other 
shapes, viz hexagonal plates, pyramids, prisms etc. 
(Prager, 1983; Cochrane, 1967). 

We have successfully grown large dendritic single 
crystals of the richly polytypic material CdI2 from 
the vapour phase, measuring up to nearly 10 mm long 
and nearly 5 mm wide. A preliminary report has been 
published (Kumar & Trigunayat, 1990). Besides the 
crystal habit, the polytypism of crystals is known to 
be affected by several other factors, of which an 
important one is the presence of impurities 
(Trigunayat, 1989). A study of the effect of the 
introduction of some selected impurities in highly 
pure melt-grown crystals of cadmium iodide has been 
made recently (Tyagi, 1988; Tyagi & Trigunayat, 1988, 
1989). It was proposed to carry out a similar study 
on the role played by impurities in the formation of 
polytypes in the dendritic crystals grown by us. 
Accordingly, it was planned to dope CdI2 crystals 
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